Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Int J Biol Macromol ; 264(Pt 2): 130570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462096

RESUMO

Starchy materials with good antioxidant, emulsification and adsorption properties have potential applications in industry. To improve these properties, a Dual-functional porous starch was prepared through one-pot synthesis. In this case, octenyl succinic anhydride (OSA) and syringic acid (SA) were selected to modify the porous starch (PS) by esterification, with subsequent signals recorded by 1H NMR at 1.2 ppm and FT-IR at 1743 cm-1, indicating the formation of Dual-functional porous starch grafted by OSA and SA. N2 adsorption analysis further proved that the porous structure (2.9 m2g-1) was still maintained after modification. This was followed by measurements of droplet size distribution (34.18 ± 3.80 µm), zeta potential (-39.62 ± 1.89 mV) and emulsion index (85.10 ± 1.76 %), all of which indicated good emulsifying capacity. Meanwhile, results of radical scavenging assay proved that the Dual-functional porous starch had considerable antioxidant properties due to the introduction of SA groups. Besides, the Dual-functional porous starch also showed good resistance to digestion. These findings not only provide a novel strategy for constructing multi-functionalized starchy materials, but also open up potential applications of starch in the food and pharmaceutical industries.


Assuntos
Antioxidantes , Amido , Amido/química , Espectroscopia de Infravermelho com Transformada de Fourier , Porosidade , Emulsões/química , Anidridos Succínicos/química
2.
Int J Biol Macromol ; 260(Pt 2): 129614, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246468

RESUMO

The potential application of succinylated chickpea protein (SCP) as a wall material for spray-dried microencapsulated probiotics was investigated. The results showed that succinylation increased the surface charge of chickpea proteins (CP) and reduced the particle size of the proteins. Meanwhile, succinylated modification decreased the solubility of protein under acidic conditions and increased the solubility in alkaline conditions. The effects of spray drying and in vitro gastrointestinal digestion on probiotics were investigated by microencapsulating chickpea protein with different degrees of N-succinylation. The results showed that all microcapsules had similar morphology, particle size and low water content. The microcapsules prepared by succinylated chickpea protein showed better stability and viability during spray drying and gastrointestinal digestion. The protective effect of probiotics was better as the degree of N-succinylation increased. In particular, the SCP-3-P sample (10 % succinic anhydride modified CP and maltodextrin) lost only 0.29 Log CFU/g throughout gastrointestinal digestion. The superior protective effect provided by succinylated CP in simulated gastric fluid (SGF) was mainly attributed to the reaction of succinic anhydride with protein to cause protein aggregation under gastric acidic conditions, reducing the infiltration of gastric acid and pepsin and maintaining the structural integrity of the microcapsules. Therefore, these findings provide a new strategy for probiotic intestinal delivery and application of chickpea protein.


Assuntos
Cicer , Probióticos , Anidridos Succínicos , Composição de Medicamentos/métodos , Cápsulas/química , Probióticos/química , Digestão , Viabilidade Microbiana
3.
Int J Biol Macromol ; 260(Pt 2): 129594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253147

RESUMO

Octenyl succinic anhydride (OSA)-modified starches have gained widespread interest, but the modification can produce two starches with different states ignored. Herein, the two types of starches, esterified starch (ES) and pregelatinized esterified starch (PES), prepared by OSA modification were separated, and their structural and functional characteristics were comprehensively explored. Results showed that compared with native starch (NS), ES and PES exhibited high water-holding capacity, solubility, and swelling power and significantly decreased pasting temperature and thermal stability. Dynamic rheological tests illustrated that OSA modification changed the rheological behavior of starches. Fourier transform infrared spectroscopy confirmed that PES with higher degree of substitution showed more obvious ester carbonyl and carboxylate groups than ES. Laser confocal micro-Raman spectroscopy revealed that the short-range molecular order of ES, especially PES, decreased after modification. X-ray diffraction indicated that OSA modification disrupted the crystalline structure of starch, and that more amylose-lipid complex was formed in PES. Scanning electron microscopy showed that OSA modification eroded starchs surface and reduced its smoothness, and significantly disrupted PES integrity. ES and PES could be developed as food additives for retrogradation inhibition of dough. These results provide new insights into OSA modification and expand its functional application in foods.


Assuntos
Amido , Anidridos Succínicos , Anidridos Succínicos/química , Amido/química , Amilose/química , Difração de Raios X
4.
Int J Biol Macromol ; 258(Pt 2): 128993, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163505

RESUMO

Starch nanoparticles (SNPs) were prepared through acid hydrolysis of Canna edulis native starch and modified with octenyl succinic anhydride (OSA) to yield OS-starch and OS-SNPs. These modified particles were used to stabilize curcumin-loaded Pickering emulsions. Effects on gut microbiota during in vitro fecal fermentation were examined. The surface of OS-starch exhibits a porous structure, while OS-SNPs display layered grooves. OSA modification was confirmed by Fourier transform infrared spectroscopy (with peaks at 1728 cm-1 and 1573 cm-1) and proton nuclear magnetic resonance spectra (0.5-2 ppm). The degree of substitution for OS-starch and OS-SNPs is 0.0106 ± 0.0004 and 0.0079 ± 0.0003, respectively. Following modification, the crystallinity decreased from 35.69 ± 0.46 % (native starch) to 30.17 ± 0.70 % (OS-starch), SNPs decreased from 45.87 ± 0.89 % to 43.63 ± 0.64 % (OS-SNPs). Contact angles for OS-starch and OS-SNPs are 77.47 ± 1.78 and 55.57 ± 0.21, respectively. OS-SNPs exhibited superior emulsification properties compared to OS-starch, forming stable Pickering emulsions with pseudoplastic fluid behavior and enhanced curcumin storage protection over 14 days (60.88 ± 4.26 %) with controlled release. Stabilizing Pickering emulsions with OS-starch and OS-SNPs positively affected on gut microbiota and improved the intestinal environment, showing promise for their application in transportation systems and innovative prebiotic food formulations.


Assuntos
Curcumina , Nanopartículas , Anidridos Succínicos , Emulsões/química , Amido/química , Curcumina/química , Fermentação , Digestão , Tamanho da Partícula
5.
Food Chem ; 441: 138289, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38176141

RESUMO

Octenyl succinic anhydride-modified chitosan (OSA-CS) was synthesized and applied as a coating material to enhance the stability of docosahexaenoic acid (DHA)-loaded nanoemulsion. Due to the presence of the positively charged OSA-CS coating, the nanoemulsion exhibited a high positive zeta potential and two different layers. Compared with natural CS-coated nanoemulsion, OSA-CS-coated nanoemulsion showed improved storage stability (physical and chemical stability) and stability against environmental stresses (ionic strengths, temperatures and pH). Besides, OSA-CS-coated nanoemulsion protected encapsulated DHA from simulated gastric fluid damage better than that of natural CS-coated nanoemulsion, suggesting that OSA-CS-coated nanoemulsion had the potential to deliver more DHA into the small intestine. In conclusion, based on the comparison of two coating materials, natural chitosan and OSA-CS, it was found that the encapsulated nutrient was better protected by the OSA-CS coating. Such a finding will provide insights to broaden the application of modified chitosan in food delivery systems.


Assuntos
Quitosana , Amido , Ácidos Docosa-Hexaenoicos , Anidridos Succínicos , Emulsões
6.
Int J Biol Macromol ; 259(Pt 1): 129243, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199535

RESUMO

This study aimed to investigate the influence of ball milling assisted treatment on the degree of substitution of octenyl succinic anhydride (OSA) modified highland barley starch (HBS) and on the physicochemical properties and structure of HBS. Scanning electron microscopy (SEM) findings showed that with the increasing of ball milling time, the surface morphology of OSA modified HBS became rougher and rougher and the particle morphology and crystal structure were damaged. When the pretreatment time of ball milling was 40 min, the degree of substitution of OSA modified HBS was 1.32 times higher than that of the conventional modification method. In addition, the longer the ball milling assistant, the longer the short-range ordering of the OSA modified HBS significantly decreased, and the relative crystallinity decreased (from 16.68 % to 7.93 %), leading to a decrease in thermal stability too. However, it greatly enhanced the aging resistance and flowability. In terms of emulsification properties, the emulsification properties of OSA modified HBS increased from 60.67 % to 75.67 %. Therefore, the HBS with better freeze-thaw stability and higher degree of substitution can be prepared by ball milling pretreatment and OSA modification, which provides technical support for further development of starch resources.


Assuntos
Hordeum , Amido , Amido/química , Anidridos Succínicos/química , Congelamento
7.
Int J Biol Macromol ; 259(Pt 2): 129288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211926

RESUMO

Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.


Assuntos
Antioxidantes , Anidridos Succínicos , Humanos , Emulsões/química , Antioxidantes/farmacologia , Resveratrol , Derivados da Hipromelose , Anidridos Succínicos/química , Células CACO-2 , Amido/química , Digestão
8.
Food Chem ; 439: 138152, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070232

RESUMO

Fish gelatin (FG) and octenyl succinic anhydride starch (OSAS) composite films loaded with 1, 2, 3 and 4 wt% bacterial nanocellulose (BNC) and Satureja Khuzestanica Jamzad essential oil (SKEO) were achieved successfully and their physicochemical and release properties were investigated. The results revealed that incorporation of BNC improved the tensile strength which was associated with FE-SEM, FTIR and XRD. Moreover, this study focused on the release modeling of SKEO in 4, 25 and 37 °C from nanocomposite films using different release kinetic and Arrhenius models. Also, analysis of variance-simultaneous component analysis (ASCA) and exploratory data visualization by principal component analysis (PCA) were carried out to investigate the effects of two controlled factors. Consequently, the Peleg model showed the best fitting of experimental data. The activation energies decreased by increasing the BNC concentration. This research demonstrated the nanocomposite film containing SKEO would be a suitable candidate for active food packaging.


Assuntos
Nanocompostos , Óleos Voláteis , Satureja , Animais , Óleos Voláteis/química , Amido/química , Satureja/química , Gelatina , Temperatura , Anidridos Succínicos
9.
Int J Biol Macromol ; 258(Pt 2): 128992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151085

RESUMO

The emulsifying properties of emulsions are significantly influenced by the structural properties of octenyl succinic anhydride (OSA) starch. The purpose of this work was to elucidate the effect of the structure of OSA starch on its performance as an emulsifier to stabilize Pickering high-internal-phase emulsions (HIPEs). The degrees of substitution (DS) of the three OSA starches were 0.0137, 0.0177 and 0.0236, and their degrees of branching (DB) were 13.96 %, 14.20 % and 14.32 % measured by 1H NMR, which were sequentially labeled as OSA1, OSA2, and OSA3. The OSA3 starch with higher DS and DB had a lower critical micelle concentration (CMC) (0.11 mg/mL). Its emulsification activity (EAI) and emulsion stability (ES) were 61.8 m2/g and 72.5 min, respectively, which were higher than OSA1 and OSA2 starches. The contact angle of the three OSA starches increased from 45.35° to 80.03° with increasing DS and DB. Therefore, it is hypothesized that OSA3 starches have better emulsification properties. The results of physical stability of HIPEs confirmed the above results. These results indicated that DS and DB have a synergistic effect on emulsion properties, and OSA starch with higher DS and DB values were more conducive to the construction of stable HIPEs systems.


Assuntos
Amido , Anidridos Succínicos , Emulsões/química , Anidridos Succínicos/química , Tamanho da Partícula , Amido/química
10.
J Sci Food Agric ; 104(2): 892-904, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37707173

RESUMO

BACKGROUND: In the present study, the insoluble fraction of Persian gum (IFPG) was modified with octenyl succinic anhydride (OSA) and its various properties were assessed. In addition, the effect of OSA-IFPG on the rheological and textural properties of dairy cream was investigated. RESULTS: Suitable conditions for achieving a degree of substitution (DS) of 0.023 were found at pH 9, IFPG concentration 4 wt%, OSA concentration 10 wt% and a temperature of 40 °C, within 120 min. The carbonyl group attachment in OSA-IFPG was also confirmed via Fourier transform infrared and H-nuclear magnetic resonance spectroscopy (1 H-NMR). While the X-ray diffraction test indicated no significant changes in the structure of the IFPG after modification with OSA, esterification increased the negative charge density, decreased thermal decomposition temperature and increased the emulsifying capacity to 100%, which was obtained for the first time. The use of OSA-modified IFPG in creams augmented the complex viscosity, loss and storage modulus, while also demonstrating the creation of a pseudo-gel network. The hardness and adhesiveness of the texture increased, which can be explained by the formation of a compact structure and reduced particle size. CONCLUSION: Overall, OSA-IFPG with hydrophilic and hydrophobic sections may function as an emulsifier and be recommended as a safe source of hydrocolloids for emulsion stability. It can also provide a positive physical structure when added to dairy cream, even if the fat concentration is lower than usual. © 2023 Society of Chemical Industry.


Assuntos
Amido , Anidridos Succínicos , Anidridos Succínicos/química , Amido/química , Emulsões/química , Emulsificantes/química
11.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958636

RESUMO

Recently, polyetheretherketone (PEEK) has shown promising dental applications. Surface treatment is essential for dental applications owing to its poor surface energy and wettability; however, no consensus on an effective treatment method has been achieved. In this study, we attempted to carboxylate PEEK sample surfaces via Friedel-Crafts acylation using succinic anhydride and AlBr3. The possibility of further chemical modifications using carboxyl groups was examined. The samples were subjected to dehydration-condensation reactions with 1H,1H-pentadecafluorooctylamine and N,N'-dicyclohexylcarbodiimide. Furthermore, the sample's surface properties at each reaction stage were evaluated. An absorption band in the 3300-3500 cm-1 wavenumber region was observed. Additionally, peak suggestive of COOH was observed in the sample spectra. Secondary modification diminished the absorption band in 3300-3500 cm-1 and a clear F1s signal was observed. Thus, Friedel-Crafts acylation with succinic anhydride produced carboxyl groups on the PEEK sample surfaces. Further chemical modification of the carboxyl groups by dehydration-condensation reactions is also possible. Thus, a series of reactions can be employed to impart desired chemical structures to PEEK surfaces.


Assuntos
Desidratação , Anidridos Succínicos , Humanos , Polietilenoglicóis/química , Cetonas/química , Propriedades de Superfície , Acilação
12.
J Agric Food Chem ; 71(47): 18587-18600, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963094

RESUMO

ß-cyclodextrin (ß-CD)-based emulsion gels encapsulated with nutrition for three-dimensional (3D) printing are promising, while obstacles such as low bioaccessibility of bioactive compounds and the molding process in food manufacturing hinder their application. This study intended to develop stable composite emulsion gels using the complexes of chitosan (CS) and octenyl succinic anhydride (OSA)-modified ß-CD (OCD) to conquer these challenges. The esterification of OSA generated more negatively charged OCD and ester groups, which aided in the combination of OCD and CS through enhanced electrostatic and hydrogen bonding interactions. The addition of CS improved the emulsification properties of the complexes and acted as a bridge link in the aqueous phase, thereby increasing the gel strength of the composite emulsion gels. Moreover, the encapsulation of ß-carotene destabilized the strength of the emulsion gels by lowering the interfacial tension. The emulsion gel stabilized by OCD3/CS-0.75% at an initial pH not only successfully encapsulated ß-carotene and presented the highest bioaccessibility of 41.88 ± 0.87% in the in vitro digestion but also showed excellent 3D printability. These results provided a promising strategy to enhance the viscoelasticity of ß-CD-based emulsion gels and accelerate their application in bioactive compound delivery systems and 3D food printing.


Assuntos
Quitosana , beta-Ciclodextrinas , Emulsões/química , Anidridos Succínicos/química , beta Caroteno/química , Quitosana/química , beta-Ciclodextrinas/química , Digestão , Géis
13.
Biomolecules ; 13(11)2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-38002276

RESUMO

Although amphiphilic chitosan has been widely studied as a drug carrier for drug delivery, fewer studies have been conducted on the antimicrobial activity of amphiphilic chitosan. In this study, we successfully synthesized deoxycholic acid-modified chitosan (CS-DA) by grafting deoxycholic acid (DA) onto chitosan C2-NH2, followed by grafting succinic anhydride, to prepare a novel amphiphilic chitosan (CS-DA-SA). The substitution degree was 23.93% for deoxycholic acid and 29.25% for succinic anhydride. Both CS-DA and CS-DA-SA showed good blood compatibility. Notably, the synthesized CS-DA-SA can self-assemble to form nanomicelles at low concentrations in an aqueous environment. The results of CS, CS-DA, and CS-DA-SA against Escherichia coli and Staphylococcus aureus showed that CS-DA and CS-DA-SA exhibited stronger antimicrobial effects than CS. CS-DA-SA may exert its antimicrobial effect by disrupting cell membranes or forming a membrane on the cell surface. Overall, the novel CS-DA-SA biomaterials have a promising future in antibacterial therapy.


Assuntos
Quitosana , Quitosana/farmacologia , Anidridos Succínicos , Micelas , Antibacterianos/farmacologia , Ácido Desoxicólico/farmacologia
14.
J Agric Food Chem ; 71(48): 19033-19044, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997356

RESUMO

Starch-lipid-protein complexes are attracting increasing attention due to their unique structure and low enzymatic digestibility. However, the mechanisms underlying the formation of these ternary complexes, especially those with monoglycerides as the lipid component, remain unclear. In the present study, potato starch or octenyl succinic anhydride (OSA)-modified potato starch (OSAPS), various monoglycerides (MGs), and beta-lactoglobulin (ßLG) were used in model systems to characterize the formation, structure, and in vitro digestibility of the respective ternary complexes. Colorimetry and live/dead staining assays demonstrated that the OSAPS had good biocompatibility. Experimental data and molecular dynamics simulations showed that both unmodified potato starch and OSAPS formed starch-lipid-protein complexes with MGs and ßLG. Of the two types of starch, OSA formed a greater amount of the more stable type II V-crystallites in complexes, which had greater resistance to in vitro enzymic digestion. This study demonstrated for the first time that starch can interact with MGs and ßLG to form ternary complexes and that OSA esterification of starch promoted the formation of more complexes than unmodified starch.


Assuntos
Monoglicerídeos , Anidridos Succínicos , Anidridos Succínicos/química , Amido/química , Esterificação
15.
Int J Biol Macromol ; 253(Pt 3): 126895, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709233

RESUMO

In the present work, a dual-modified waxy rice starch (OOWRS) fabricated with OSA and ozone was successfully used to stabilize the O/W Pickering emulsion. The molecular structure, surface properties, and underlying stabilizing mechanism were systematically investigated. The results showed that oxidation occurring on the surface of OSA-modified waxy rice starch (OSAWRS) resulted in the presence of indentations and cracks. The relative crystallinity of starch was generally decreased with increasing degree of oxidation. Due to the introduction of carbonyl and the variation in surface structure, the hydrophobicity and acidity of OSAWRS were significantly enhanced after the ozone treatment. Remarkably, OOWRS stabilized Pickering emulsion exhibited a feature of typical O/W emulsion, and the 0.5 h and 1 h OOWRS emulsion exhibited a more uniform droplet size as well as a higher surface potential. We also noted that a weak-gel network was formed within the OOWRS emulsion system as the hydrophilic starch chains played a bridging role. Two reasons for the improved stability of the emulsion were the special gel structure and the enhanced electrical repulsion among the droplets. This research provides that ozone-conjugated OSA modification is a promising strategy for improving the emulsion ability of starch-based Pickering emulsions.


Assuntos
Oryza , Emulsões/química , Oryza/química , Anidridos Succínicos/química , Amilopectina , Amido/química , Propriedades de Superfície , Tamanho da Partícula
16.
Int J Biol Macromol ; 253(Pt 5): 127102, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769765

RESUMO

Octenyl succinic anhydride modified tamarind seed polysaccharides (OTSPs) with various degrees of substitution were first synthesized and characterized in this work. The structural, solid-state, solution and emulsifying properties of the OTSPs and the effect of the degree of substitution (DS) were investigated. The structural characterization confirmed the successful grafting of the OSA moiety into TSP and the chain extension of the OTSPs. The hydrophobicity of the modified polysaccharide molecules increased, the absolute value of the zeta potential increased, and the thermal stability decreased, which were positively or negatively correlated with the changes in DS. In contrast, the hydrolysis of polysaccharides in alkaline aqueous solution led to a decrease in molar mass and the rigidity of the molecules, which were not significantly related to DS. Particle size analysis showed that OTSPs tended to aggregate into relatively small agglomerates, which was confirmed by the results of morphological analysis. Most importantly, the instability indices of emulsions stabilized by TSP, arabic gum and OSA-starch were 0.521, 0.715, and 0.804, respectively, while for OTSPs this parameter was between 0.04 and 0.19 under the same conditions, indicating better physical stability of the OTSP-stabilized emulsions, especially for OTSP-30. Overall, OTSP has great potential as an emulsifier for oil-in-water emulsions, especially for emulsification and stabilization in food processing.


Assuntos
Tamarindus , Emulsões/química , Emulsificantes/química , Amido/química , Esterificação , Tamanho da Partícula , Anidridos Succínicos/química
17.
Int J Biol Macromol ; 253(Pt 2): 126606, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652318

RESUMO

Functional properties and ability to stabilize Pickering emulsions of amaranth starch with the novel nonenyl succinic anhydride (NSA) modification and the widely used octenyl succinic anhydride (OSA) modification were compared. The NSA modification was more effective in altering the rheological properties of amaranth starches. NSA-modified amaranth starch showed significantly higher peak viscosity (7.13 Pa·s at DS of 0.02209) than the OSA-modified amaranth starch (6.10 Pa·s at DS of 0.03042). The gelatinization temperature, gelatinization enthalpy, and relative crystallinity of amaranth starch were more affected by the OSA than the NSA. The Pickering emulsions stabilized with NSA-modified starches had higher stability than those with the OSA-modified starches as characterized by particle size distribution, morphological, and rheological approaches. A lower degree of substitution by NSA than by OSA is needed to achieve a similar emulsification capacity. Thus, the NSA modification could be an efficient alternative to OSA modification in tailoring physicochemical and rheological functions, as well as stabilizing Pickering emulsions.


Assuntos
Amaranthus , Anidridos Succínicos , Anidridos Succínicos/química , Emulsões/química , Tamanho da Partícula , Amido/química
18.
Int J Biol Macromol ; 252: 126439, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611688

RESUMO

Octenyl succinic anhydride (OSA) modification of amyloid proteins fibrils (APFs) was employed to improve dispersibility and ice recrystallization inhibition activity. OSA mainly reacted with the amino groups of APFs without significantly changing morphology. OSA-modified APFs (OAPFs) had lower pI, carried more negative charges, and were more hydrophobic. OSA-modification showed a pH-dependent effect on the dispersibility of fibrils. At pH 7.0, OSA-modification improved dispersibility and inhibited heat-induced gelation of fibrils at weakened electrostatic repulsion. OAPFs were more prone to aggregation with lower dispersity at acidic pH values and demonstrated stronger IRI activity than unmodified fibrils at pH 7.0. Our findings indicate OSA-modification favors the industrial application of APFs as an ice recrystallization inhibitor with enhanced dispersibility.


Assuntos
Gelo , Amido , Amido/química , Proteínas Amiloidogênicas , Anidridos Succínicos/química
19.
Int J Biol Macromol ; 253(Pt 1): 126579, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37648131

RESUMO

Octenyl succinic anhydride modified porous starch (OSA-PS) with degrees of substitution (DS) from 0.0123 to 0.0427 were prepared by aqueous phase method. From SEM, PS had a porous structure which showed a rough and corrosive surface after esterification with OSA. FT-IR revealed the characteristic peaks of OSA-PS at 1725 cm-1 and 1570 cm-1. From 1H NMR spectra, OSA-PS displayed extra chemical signal peaks at 0.85 ppm, 1.25 ppm and 1.96 ppm. These results fully demonstrated that OSA groups were successfully grafted onto PS. Furthermore, as DS increased, the specific surface area (5.6464 m2/g), pore volume (0.9959 × 10-2 cm3/g) and methylene blue adsorption capacity (24.3962 mg/g) of OSA-PS reached the maximum, while its relative crystallinity (26.8112 %) and maximum thermal decomposition temperature (291.96 °C) were the minimum. In vitro digestion studies showed that with the increase of DS, OSA-PS' contents of rapidly digestible starch and slowly digestible starch decreased from 9.06 % to 6.27 % and 28.38 % to 14.61 %, respectively. In contrast, its resistant starch had an increase in content from 62.56 % to 79.12%. The results provided an effective method for obtaining a double-modified starch with high specific surface area and anti-digestibility, thus broadening the industrial application of starch.


Assuntos
Amido , Anidridos Succínicos , Anidridos Succínicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Porosidade , Amido/química , Digestão
20.
Food Chem ; 429: 136748, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467669

RESUMO

High internal phase Pickering emulsions (HIPPEs) stabilized using modified starch nanoparticles (SNPs) were studied as a delivery system for ferulic acid (FA). The quinoa (Q, 153 nm) and maize (M, 221 nm) SNPs were prepared by sono-precipitation and modified with nonenyl succinic anhydride (NSA) and octenyl succinic acid (OSA). The FA-encapsulated HIPPEs obtained showed neither coalescence nor Ostwald ripening, as reflected by emulsion index and droplet size measurements. Confocal laser scanning microscopy revealed FA entrapped droplets surrounded by the SNPs layer. The rheological measurements confirmed strong network formation and long-term stability. In vitro studies (pH 7.4, 96 h) showed sustained release of FA from the gel network. After 15 days, the encapsulation efficiencies for HIPPEs stabilized with both NSA and OSA modified QSNPs and MSNPs were close to 99%. The results showed that FA could be feasibly encapsulated in HIPPEs stabilized using modified SNPs.


Assuntos
Chenopodium quinoa , Nanopartículas , Emulsões , Anidridos Succínicos , Zea mays , Tamanho da Partícula , Amido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...